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1. BACKGROUND AND INTRODUCTION

The initiation and propagagtion of macro-fractures in solid propellant
rocket motor grains is a frequent structural problem. Much exploratory
development effort has been conducted in attempting to obtain reliable pre-
dictive measures for solid propellant fracture with only limited success.
One factor involved in this situation is the inadequate understanding of
the physical processes which occur in propellants under stress prior to the
appearance of fracture surfaces. Research into propellant prefracture
behavior should provide a better understanding and foundation for future
development of fracture prediction methods,

A preliminary research in propellant prefracture behavior has been
conducted during the past 23 months. Both theoretical and experimental
approaches have been carried out according to three phases of a program.

Phase I was primarily concerned with the development of a mathematical
model which would be applicable to a single prefracture configuration of
solid propellant under stress. The occurence of such a prefracture con-
figuration in polymeric systems is usually termed a craze. Concurrently
an experimental technique was to be developed for determining the displace-
ment and stress fields in the vicinity of a craze. During this phase some
specially prepared propellant polymers with and without ammonium perchlorate
were tested.

In Phase II extension to highly filled propellant polymer samples was
to be added to the investigations. Phase III was to extend the studies to
massive crazing and craze-crackitransitition and fracture propagation.

This report covers the attempts made and work done in Phase I. Since
the nature of this research is basic and complex, the efforts and develop-

ments are reported under separate headings as reflected in Section 2.
2. DEVELOPMENT AND APPLICATION OF THEORIES
In order to develop an effective mathematical model for analyzing pre-

fracture behavior of solid propellants under stress, several approaches

have been considered. A two-dimensional formulation of a single craze in




propellant polymer, an improved double beam model for large deformations and
the time dependent behavior of craze propagation have all been attempted.
These together with the development of a laser speckle technique for dis-

placement measurement are reported separately in the following subsections.
2.1 Prefracture Analysis of 2D Craze in Propellant Polymers

2.1.1 Introduction - Under tensile stresses certain high polymers
deform from sites where stress concentrations are created and crazes develop.
The development of crazing in polymers is a prefracture phenomenon. The
mechanism of the development of a single craze is complex. After the
nucleation of a craze to the naked eye it appears like a crack. Thus the
analysis of a crack has been utilized to study the craze. Since there is
no material present within the crack, but a new phase of oriented polymeric
molecules fill in a craze which act as boundary stresses, any governing
formulations should at least include this feature for adequate analysis.

This report limits its scope to consider such an approach.

2.1.2 2D Craze Formulation - As shown in Figure 1, a two-dimensional

craze is considered to occur in an infinite sheet in a simple tension stress
field with magnitude % vertically in a rectangular coordinate system QOxyz.
A craze is assumed to have developed horizontally along the x coordinate with
oriented polymer molecule strands acting as prescribed craze boundary stresses
in the z-direction.

Using linear elasticity theory, if the body forces are neglected, the

two-dimensional biharmonic equation

v2v%4 = o0, (1)

where ¢ is a stress function, governs the state of stress of a plane problem

such that the stress components are given by

a2, .2
Oy = 0 0/3z°, (2)
a2, ,..2
O, = 3°¢/0x%°, (3)
and o = -32¢/3xaz. (4)
Xz
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The mathematical description of this boundary value problem is te find ¢
such that Equation 1 i. satisfied, however, subject to the boundary con-
ditions that

2
Opz = 0ot Tgx = Tyz = 0 as (x° + z2)% » o (5)

and o k(x)w(x) |x] < ¢ (6)

zz
where k(x) is a modulus function, w(x) is the vertical displacement field,

and ¢ is the half length of the craze.
The solution of Equation 1 with the above boundary conditions can be

obtained using the Fourier transform method:
o]

0,,(x) = o, = (2/m) J E(E)cos(gx)dg, (7)
(o}
wix) = [4(1-v2)/nE] J [F(€)/Elcos(Ex)dAE, x| < c (8)
o]
and w(x) = 0, x| > ¢ (9)

where E = modulus of elasticity of the medium,
v = Poisson's ratio of the medium,

and F(g) satisfies the dual integral equations:

(2/m) J F(£)cos(Ex)d: = 0o = k(x)w(x), Ix] < ¢ (10)
o
and f [F(£)/&)}cos(Ex)dE = 0, x| > ¢ (11)
o

Using dimensionless quantities and solving, eventually

0,,(X) = k(x)w(x), Ixl <1 a2
( %o* 2a (3 * k(n)w(n)
and g x) = ———— 4 I I a dc’
zz (x2-1/2 " a2 77| 2 2172

o

Ix] >1 (13)
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where k(x) and w(x) may be in series form and computer programming can be
employed to obtain the displacement and stress fields once k(x) is given.
The function used for k(x) is of the following form:

k(x) = k_[£+(1-£) AT IOtV IR C Aty LIPS (14)

where ko is a constant modulus of the medium, f is a fraction, and ) 1is a
parameter. Thus for A = 3, £ = 0.01 the modulus function becomes

8
k(x) = k_[0.010 + 0.491 <2 + 0.368 x- + 0.111 x° + 0.018 x

+ 0.00178 %10 + 0.00012 x*2 + ...] (15)

Figures 2 and 3 respectively show the displacement field and the stress field
for the modulus function given with f = 0, 0.01, 0.1 or 0.5. Dimensionless
quantities were used for plotting the results. w/w0 is the dimensionless dis-
placement with w, as the homogeneous displacement of the medium under the
stress % The dimensionless stress is simply o/co. The quantity X was
chosen to be 3. For solid propellant polymer, the following data have been
used: modulus of elasticity E = 94.2 psi, Poisson's ratio v = 0.5, 0o = 1 psi
and k0 = 1000 psi.

It is estimated that for a common craze of a brittle polymer, f is likely
to be around 0.5 or less. When actual fracture develops at the center of a

craze, £ = 0.

2.1.3 Discussion - The analysis is based upon the theory of elasticity
for small deformations. Therefore, the results are expected to satisfy the
crazing behavior of brittle polymers. For polymeric systems which respond to

load in large deformations, this theory is not likely to hold.
2.2 Prefracture Analysis of Craze in Solid Propellant

2.2.1 Introduction - The phenomenon and study of stress crazing in
polymeric materials have gained increasing attention and momentum in the
recent years. Different models have been suggested to describe the physical

and chemical properties of a craze. It has been noticed that the molecular

9
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behavior of the partially oriented craze material depends on the stress dis-
tribution on the craze boundary which is interrelated to the displacement
field of the craze boundary. This report attempts to develop a simple

elastic model which can be used to evaluate the craze displacement field
directly from a given stress condition. Using the analogy between the contour
of a craze boundary and a bar bent to the same contour, the problem. can be
reduced to a one-dimensional case. As the craze material deforms under
geometric constraint, the volume increases while the density decreases and
voids and polymer bundles are produced. These oriented polymer bundles behave
like elastic springs, and the spring force, together with the tensile stress
on the bar, and stress at infinity constitute the force equilibrium on the bar.

2.2.2 Model and Formulation of Governing Equation - Consider an

infinite sheet of polymeric material under constant stress 9 applied at
infinity along the z-direction. By placing the cross-section of a craze on
the y-z plane as shown in Figure 4 and considering the force balance of an
infinitesimal element of the bar, which is subjected to surface tension forces
S and S + dS, tensile stress gy prescribed stress o(x) and bending stiffness

of bar D(x), the displacement field is described by the differential equation

D(x)vzvzw(x) - S(x)vzw(x) + k(x)w(x) = o, (16)
where
w(x) = displacement in z-direction,
D(x) = bending stiffness of bar,
S(x) = tensile stress,

and k(x)w(x) = g(x) = prescribed stress due to craze material.

Based on geometry, it has been shown elsewhere that for small displace-
ments, the ratio k(x)/S(x) is constant. And both E(x) and S(x) are properties
of the craze bounda,~ which is made of partially oriented polymeric material

and proportional tr the degree of orientation. It is reasonable to assume
that S(x)/D(x) is constant. Define

0
x
>
N
>
[ 18]
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k{x) - 2 2
Doy - M1 2 v (18)
2, 2
[e)
ana 2o 291’2 K (x)
D (x) k(x) - ¥ (19)

where Al’ Xz are constants.

The governing equation becomes:

2

v Vzw(x) - (A 2

1

+A22)v2w(x) + >\12>\22w(x) = K(x), (20)

By symmetry about the z-axis, it is known that w(x) is an even function.
i

The bar is considered as a cantilever beam built in at the craze tip.
This allows room for investigation of stress field beyond the craze tip. In
order to be able to obtain solutions in closed form, the following boundary

conditions are employed:

w'(0) = w"(0) = w(c) =w'(c) =0 (21)

where the primed quantities represent their derivitives with respect to x.
Assume the spring constant of the polymer bundles k(x) varies exponentially
with x and

Ax -AxX

_ e + e - 2 .
k(x) =k [£+ (L=~ £) (5 )] (22)
e + e - 2

where
A is a constant,
ko is the modulus of elasticity of the bulk material,
and f is a fraction which accounts for the decrease of density of craze

‘material as it deforms.

2.2.3 Solution - General solution of the governing differential

equation is

14




wix) = clexlx + cze-xlx + c3ex2x + c4e-A2x
X
+ J J(x - E) K(&) d4g (23)
0
where
AqxX < A1x, Aox _ =X
Dy e ¥ - eTMX) - (2 - o7 2
J(x) 3 2
2X1X2 (Xl - A2 )
Define
(v %) = f ¥~ & de , (25)
Fly, x) = - = g;
0 £(e’C + e 2% 2 + (1 - £) (e'" + e™*%)

then the solution can be written as,

- Al1X -A1x Aox -Aox
w(x) ce + c,e + c,e + c e
Ac -AC
Alkz 0°(e + e - 2)
+ ) ) ’
2kg (A< = 2,9

AP ,X) = AF(=X,%) = M F(Ay,x) + MF(=h,,x) (26

Apply boundary conditions, and solve

2 Ac -\cC
. e = Alxz co(e + e - 2) : —
1 T2 2_ 2 _ —(>\1+)\2 c _ ( 1-A2 c]
Zko(kl Xz ){(Xl Xz)[e e
1

. _ _ Xac

+ [(Al + AZ)F(AI,C) + (Al - \Z)F(—Xl'c) - ZAIF(AZ'C)]e‘XZC}‘
(27)

15
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AC -AcC

ll Xz Oo(e + e - 2)
C = =
3 4 2 ) =
2k, (1 23,20 L =hy) [e” OLPADIC _ OAIF RIS
l *
O+ Az)[e‘(xl'lz)c N YIS

. - _ - _ AjcC
{0y = APF,L) + (A + A)F(=),,0) 20, F(=4,,c)]e 1

-A
+ L + A)NF(A,,0) + (A, = AIF(=2,,0) ~ 20,F(Ay,c)le 1}

(28)
A A, co(eAc +e7AC | g
wix) = 5 3
2ko (117 = 2,9
. A2[F(Al,x) - F(—Al,x)] - Al[F(AZ,x) - F(-AZ.X)]
+ A_(eM¥ 4 gTAXy [Qr2C (3 LA )F(A,,0)
2 17 %2 1’
+ (xl + XZ)F(-kl,c) - leF(—Az,c)]
-AsC - -
+ e 25 (A + ANF(A,0) + (A = A)F(=)y,0)
A2x =A2X X1¢ _
+ A (e + e )[e 1 [(A, = A F(Ay,0)
+ (Al + AZ)F(—xz,c) - zxZF(-A&,c)]
+ e'llc[(kl + XZ)F(XZ,C) + (A, - xl)F(—Az.c)
- 2
2,500t (29)

16




2.2.4 Results and Discussion - Based upon the model and solution described

above, a number of displacement fields and stress distributions for different
parameters A, Al, Az have been obtained numerically and plotted as shown in
Figures 5 and 6. In these plots, A was taken to be 3 while Al and xz are 2
and 3, respectively. This simplified one-dime.sional analysis shows quantita-
tive similarity with results obtained from a two-dimensional analysis. This
encourages further investigation of the stress distribution at and beyond the
craze tip where the two-dimensional analysis indicates a similarity. By
properly selecting the boundary conditions, solutions in closed form have
been obtained. The singular condition will be considered by application of

other mathematical techniques.

2.3 Prefracture Analysis of a Viscoelastic Craze in Solid Propellant

Polymer

2.3.1 Introduction - Although crazing does not initially affect the
polymer's load-carrying capacity, the propagation of crazes causes further
deformation and eventually fracture. The mechanism of inception of crazing,
propagation of crazes, nucleation of cracking and local stress distribution
indicate that viscoelastic properties of the craze medium, as well as the
bulk medium, play an important role in a complete analysis of the problem.
An elastic model has been developed and reported in an earlier section of
this report, and it is the object of this section to extend the result to the
viscoelastic regime using linear viscoelastic models. It is obvious that
the craze medium and the bulk medium undergo deformation at different rates,
and they have different viscoelastic properties due to a difference in the
degree of molecular orientation.

2.3.2 Elastic Model - Consider an infinite sheet of polymeric material

under constant stress 9, applied at infinity. This can be reduced to a one-

dimensional problem when attention is confined to the craze boundary which is

simulated by a bar bent to the same contour. The solution of the displacement
field is
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o (e)\c+ e-)\c

1A2 o ~-2)

{AZ [F()\f")-F(-)\l,x) ]"xl [F(xzax)'F(_.Az’x) ]

A C
+ A, (e +e ! )[e 2 DA FO O+ O F(=A |, 0) =20 F =1y, €)]

-A.C
ve ? [N FO S +0=0,)F(=Ay,€) =21 F(R,, €) ]]

Ax A A C
* x) [ e ! [Oy=2 DFOy, +(A 1) F(=2,,©)=21,F (-1, €) ]

-3, C
+e 1[(x1+>\2)F()\2,C)+(7\2—?\1)F(->\2;C)-2>\2F(Xl,C)]j}
(30)

where Al, AZ’

2.3.3 Viscoelastic Model - In the above solution of displacement field

A, C are constants as reported earlier,

of the craze boundary, the quantities which are time dependent are applied {

stress, co(t), modulus function of bulk medium, ko(t), and the function f(t)
which appears under function F(y,x,t).

So the time dependent displacement field is

o (t) [elc+ e—A c—2]

A A
17270
w(x,t) = }{A [FQA 5%, €)=F(=A ,X,£) 1 =2 [F(A,,%, ) ~F (=1, %,1)]
3 Zko(t)ﬂlz-lzz) 2 1 1 1 2
Alx -Xlx Azc
+A2(e + e ) [e [(Al-Az)F(Al,c,t)+()\l+)\2)F(-)\1,C,t)-Z)\lF(*lz,C,t)]

P N
+ e [ ()\I-XZ)F(XI) c,t )+()\1-A2)F(—A2,C, t)"ZA lF(Az, C, tn ]

T )\2x —>\2x A e , )
+ Al(e + e ) [e [()\2-)\1)}'()\2, C, t)+(}\1+A2)F(-A2!C: t._zsz(-Ala C, t)

-A.C ’
+ e 1 [(AI'H\Z)F(AZ,G, t)+(x2-)\1)F(‘-X2,C, t)-ZAZF(Al,C, t)])
a (31)

By Laplace transformation, the displacement field in the Laplace domain is

L A f
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A A0 AC, =Ac _ _ — —
W(x,s) = 208l _te '2){A2[F(x1,x,s)-F(-xl,x,s)]-AllF(xz,x,s)-F(-xz,x,sn

2 2)
2ko(s)(>\l -Az

A;x =A.Xx ( Azc

! 1 = F(- 8§ =21 F(~\,,c,8)
+ Az(e + e ) le I(,\I—AZ)F(xl,c,s)+(>‘1+>\2)F( Xl’c’s) 2)“1 (=2,,c s3]

A,c

+e “ I(lf+xz)F(Al,c,s)+(l1-hzyf(~lz,c,s)‘ZXI?KXZ,C,S)]J

ApX  —~AoX AqC - — -
+ (e 247 [e I(Az—ll)F(AZ,C.S)"'(XIHZ)F(-)\z,c,s)‘Z)‘zF(‘MvC’S)]

,". _ }
b -\ C =/ . a - '__ - F()\.. ’5.
ri v LIOMPTFOLe)+0)m0 PDF(R,, 69 -20,F0 e o)
i _ x y(x-£§)
where F(y,x,s) = J ex X — N AL dg (33)
3 () (e e )2+ [1-F(s) 1 ("7 7
il
1 where ko(t) is the modulus of the bulk medium, i.e., before a craze is developed
f in it. Dividing the modulus of elasticity E(x,t) of the bulk medium by a
; characteristic length, say h, gives the spring constant or elastic foundation
} constant ko. Before a craze initiates,the displacement w, of an imaginary
' plane under uniform stress o, is given by
o %
| Yo = % (34)
i o
: _E(x,t)
‘ where ko(t) e (35)
, where h is a constant.
] So ko(t) has identical time-dependent properties as E(x,t). Now
Ax -Ax
e "+ e -2
k(x,t) = k_(t) (f(t) + (1 ~£f(t)] e e (36)
e "+ e -2
where k(x,t) is the time dependent modulus function of craze medium.
) Physically k(x,t) depends on displacement w(x,t) and the nonlinear visco-
: elastic nature of k(x,t) can be predicted. From the above definition of
) k(x,t) it is obvious that nonlinear properties come from the function f(t)

- which also depends on w(x,t).
l
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Therefore, it may be concluded that the bulk medium outside craze region is

linearly viscoelastic while the craze medium is nonlinearly viscoelastic.

The stress applied at infinity, co(t), is constant so it can be represented

by a unit step function,

Iolt) = O, ult)

By Laplace transformation

Oo
g = —
O(s) S

E(x,t) and ko(t) are linearly viscoelastic quantities.

By linear viscoelasticity in the Laplace domain

Po..(s) = Qveii(s)

Volume Behavior ,

n'@
n
0
S
]
L @]
—
0

Shear Behavior

, Eii are normal stress and strains,

s eij are deviatoric stresses and strains,

P, Q, Ps, QS are viscoelastic operators in the Laplace domain.

v v

In elasticity

.. = 3K €.,
ii ii

i
(3]
al
o

S.. ..
ij ij

where K is bulk modulus and G is shear modulus.

By analogy

%
7 3K

(37)

(38)

(39)

(40)

(4a1)

(42)

(43)




By theory of elasticity

9KG

E=sv0- (45)
So, by the principle of correspondence in the viscoelastic regime,

_ oG WeG Sey 3 Gy Qs

E(x,s) = Qv/Pv . _21_ QS/ps = Q"/Pv . %_Qs/ps, (46)
Taking the Laplace transformation of Equation 35

K (s) = EXas), (47)

Assume that the volume behavior of the bulk medium is elastic and that the shear

behavior is represented by a Maxwell model.

Oii(t) = 3Kpt ii(t)'
(48)
9

n 9 _
Si5(0) + E}'kB'aT Si5(8) =g 3¢ e;4(t). (49)

where subscript B denotes properties of bulk medium.
k and n are the spring constant and damping coefficient of the mathematical
model respectively.

By Laplace transformation
g = 3K, €,.(s
gi4(s) 3Ky g5 (8), (50)
B ij (51)

SO (52)
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?_5= sij(s) _ g s s3)

D P —

S eij(s) ‘EB + nBs

_ 3Ry (x4 Rye Tk, 7

E(s) = o= = = ‘ (54)
7 ln,s = T % > =
3K, + 5 B /EB+ nBs 6Kk, + (5KB+1)nB

and o(x,t) = k(x,t) w(x,t) = k(x,t) h €(x,t) (s5)
_ 1 o(x,t)

kix,t) = ¢ Xt (56)

For nonlinear viscoelasticity the stress-strain relationship can be obtained by
use of the absolute reaction rate theorem.

For the Maxwell model,

E(t) = £ G(t) + Z(t) sinh WL (57)
C

where subscript c denotes craze medium and kT represents thermoenergy, v is a
material constant and z(t) is a time dependent function.

2.3.4 Result and Solution - By choosing an appropriate model for the non-

linear viscoelastic behavior of the craze medium, k(x,t) can be solved from
Equation 56. Then with an appropriate choice of linear viscoelastic model for the
bulk medium E(x,s) and Eg(s) are obtained, and ko(t) is determined by Laplace
inversion. The result is then substituted into Equation 36, which is solved

for f(t). After f(t) is obtained, f(s) is determined and F(y,x,s) is solved

for from Equation 34. With known Eg(s), Eg(s), F(y,x,a) and E(s), w(x,s) can be

solved from Equation 33 and w(x,t) is solved by Laplace inverse transformation.

2.4 Measurement of In-Plane Displacements of Propellant Polymer Craze by
Speckle Technique

It has been known for some time that, in speckle interferometry, in
principle one can magnify the original speckle size and record a magnified
speckle pattern on a photographic negative. This section will describe how it
has been done in the laboratory and will present some results. It will also
point out a few technical details one should pay attention to when using this

technique.
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The authors have been using speckle interferometry to find the displacement

field along the boundary of a craze or a crack. A craze is created in a
propellant polymer specimen. The speckle pattern is formed by illuminating the
craze boundary in the specimen under two different states of applied stress with
a laser beam and using a double exposure technique to record the interference
pattern so formed on a photographic negative. It is desired to measure the dis-
placement fields at as many points as possible, especially near the craze tip
region. Hence it is desirable to obtain an enlarged speckle pattern for a

small region, so that the fringes can be constructed at many different positions

in this small region. Using the well-known relationship:

a -k (58)
where d = displacement between two applied loads,
A = wavelength of laser,
L = distance between the speckle pattern and the fringe image plane,
M = magnification factor or speckle pattern,
and h = pitch of the fringes,

the displacement field due to applied stress can be obtained.

The photographic system used is illustrated by Figure 7; a schematic diagram
of the system is shown in Figure 8. A microscope is placed along the reflected
beam of the specimen, the image of which goes directly to the camera. NOTE:
every component of the system must be fixed in position and any relative move-
ment between laser source, specimen, microscope and camera will distort the
speckle pattern. All thre lenses, specimen, and recording negative are aligned
perpendicular to the laser beam. One essential thing to be noted when a
speckle pattern is recorded is that the photographic negative has to be placed
at the exact position where the interference pattern is formed. Since there
is a slight shift in positions between the plane on which one views the image
in a camera and the actual position of the negative, the image must be adjusted
to an apparent out of focus position when viewed through the camera. This
compensates the shift and will place the negative at the exact position of the
interference pattern. As to the question of how far off-focus should it be,
this has to be answered by experience since it may differ from one photographic

system to another. Exact compensation is especially critical here since a
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microscope is used to magnify the incident beam before it falls on the

recording negative. The microscope produces a magnified interference pattern
exactly at the focal length of the eye-piece. Any error in positioning the
negative may cause a large distortion of the speckle pattern.

Figures 9a through 1la are the speckle patterns recorded with the incident
beam magnified by one, three and 10 times for propellant polymer specimen,
respectively. Figures 9b through 11b are the corresponding fringes
obtained near the craze tip in the specimen. It is noted that higher magnifi-
cation factor lowers the contrast and distinction of the Young's fringes.
Another disadvantage of this microspeckle method is that the magnitude of
applied stress and strain (between two exposures) is limited since each
speckle pattern covers only a very small region on the specimen. This is
especially important for rubber specimens where large deformation is usually
encountered. However, the magnification factor can be increased, if desired,
by using a microscope of higher resolving power and magnification factor. The
double convex lens placed behind the spatial filter is not necessary if the
laser source is strong enough (the one used here is 0.05 mW He-Ne laser).

The present system has room for improvements.,

2.5 Prefracture Behavior of Polymer Systems

2.5.1 Introduction - During the past thirty odd years a great deal of
knowledge has been accumulated on the development of crazing in brittle polymers
in a tensile stress field., Five excellent reviews of craze and fracture in
polymers summarizing a wide variety of experimental observations and physical
models have appeared (1,2,3,4,5). It is generally accepted that glassy polymer

fracture proceeds in the following sequences:

R. P, Kambour: J. Polymer Sci. D (Reviews) 7, 1 1973,

S. Rabinowitz, P. Beardmore: CRC Critical Reviews 1, 1 1973,

W. G. Knauss, Applied Mechanics Reviews 1 1973, 1-17.

H. H. Kausch, Polymer Fracture, Spring-Verlag Berlin Heidelberg New York,

1978.

5. Edward J. Kramer, '""Developments in Polymer Fracture -1" ed by E. H. Andrews,
Applied Science Publishers LTD, London, 55, 1979.

1.
2

3.
4.
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Figure 9a, Specklegram of Propellant Polymer 1X

Figure 9b. Fringe pPattern near Craze Tip
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Figure 10a. Specklegram of Propellant Polymer 3X

Figure 10b. Fringe Pattern near Craze Tip




Figure 1la. gpecklegram of Propellant Polymer 10X
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Figurc 11b. Fringe Pattern near Craze Tip




At sites of stress concentrations or defects such as cracks, flaws,
inhomogenities, particle inclusions and environmental softening
zones, crazes nucleate well before fractures;

With sustained local large straining, a craze continues to grow
and deform internally;

Eventually cracks develop usually at the central region of indivi-
dual crazes;

Subsequently, these cracks propagate behind the craze tips by
repeating somewhat similar processes as described above.

Up to now most of the continuum mechanics models used for analyzing
prefracture craze behavior are based upon a generalized Dugale crack with a
plastic zone at each tip (5,6,7). The plastic zone is considered as a region
of craze. Methods in linear fracture mechanics for elastic media have been
employed for analyses. Schapery in a series of papers (8,9,10,11,12) em-
ployed the concept of conservation of work and fracture energy criterion and
generalized Dugdale model for linear viscoelastic materials. All these
considerations are based upon the assumption that the length of the craze
zone (same as the failure zone or plastic zone) is negligible compared with
that of the crack., Thus the craze growth velocity, crack growth initiation
time and its propagation velocity are governed by a crack induced stress

intensity factor. . .
In prefracture processes of polymeric systems crazing occurs usually

before any cracking. Thus the assumption that the crack length is much
larger than the craze region is no longer adequate. Therefore the applica-
tion of the fracture mechanics method directly in analyzing this complex
occurence is unlikely to be satisfactory. As a result a new approach is

considered. In this report, the above assumption is eliminated from

6. Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics, Prentice-

Hall International, Hemel-Hempstead, Herts, 395, 1965.

7. Gerberich, W. W, International J. of Fracture, 13, 55 1977.
8. R. A. Schapery. Int. Journal of Fracture, 11, 144, 1975.

9. R. A. Schapery. Int. Journal of Fracture, 11, 369, 1975.
10. R. A. Schapery. Int. Journal of Fracture, 11, 549, 1975.
11. R. A. Schapery. Int. Journal of Fracture, 14, 293, 1975.
12. R. A. Schapery. SIAM - Ams Proceedings 12, 137, 1979,




consideration. In addition the entire local deformation behavior responsible
for craze-thickening and load-bearing characteristics is taken into account
in formulating a new mathematical model. This is necessary if a better
understanding of the craze mechanism, the transformation of the polymer
matrix into a new phase (craze material with voids) is to be obtained.
Fundamental properties such as the molecular orientation strength of the
polymer and the breakage rate of the molecular bundles should be considered
in a complete endeavor.

Knight (13) and Kramer (5) utilized a Fourier transform method for
crack analysis and introduced either an assumed or measured displacement
field of a craze profile to calculate the stress distribution. Verhuelpen-
Heymans and Bauwens (14) assumed a two-step stress distribution and used
Muskhelishvili's complex variable technique (15) to calculate the displace-
ments of a craze. In these cases the problem has been treated mathematically
as either a first boundary value problem with prescribed traction forces or
the second boundary value problem with prescribed displacements. In both
cases the initial shape of a crack has been considered as its boundary with
singular crack tips. However, in the present analysis, the load-bearing
molecular bundles reduce the singular nature of stress concentration at
craze tips. The new model developed predicts both the displacements and

the stress distribution along the prefracture craze envelope.

2.5.2 Model Analysis ~ The occurence of crazes in many stressed polymers

is a common phenomenon. According to the current understanding the formation
of an individual craze comes about as a physical transformation in the
deformation processes from an original phase to a new phase with oriented
molecules and voids. Each craze is usually quite similar to any other. This
suggests the possibility of analyzing the vicinity of a single craze by con-
sidering a symmetrical double beam as shown in Figure 12. AABB shows a

quarter section of the augmented double beam containing a thin primordial

13. A. C. Knight. J. Polymer Sci. 3 1845, 1965

14. Verhuelpen-Heymens, N. and J. C. Bauwens, J. Materials Sci. 11 7, 1976
15. N. I. Muskhelishvili, "Some Basic Problems of Mathematical Theory of
Elasticity', Neordhoff, Groningen, The Netherlands, 340, 1953.
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craze layer next to BB which has transformed into the new phase resisting
both the normal and shear deformation. The mathematical equation governing
the vertical displacement w(x) of the center line CC for the uniform beam

AABB of unit thickness is:

E17°v2 - SOV + KGOW = o (59)
where E is the modulus of elasticity of the beam,
I is the second moment of the cross-section of the beam,
2 _
v = 32/3x2 is the del operator,

S is the shear foundation modulus,

R, M o

K is the elongation foundation modulus,
and 9 is the applied stress.

With the following boundary conditions:
w'(0) = w'"(0) = w'(2c) =w'"(2c) =0 (60)

where the primed quantities represent their derivitives with respect to the

length of the craze. Equation 59 can be solved by finite difference methods

for any foundation modulus function. That is,Equation 59 can be rewritten

as normal first-order system

Lt

W' = [S(X)W” - K(x)w + O'o]/EI, (61)

or, in matrix form,

d[W]l/dx = [A] [W] + [B] (62)
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(63)
s
(64)
(65)
The boundary condition is
[C1W] o + [DIIWI__,_ = (] (66)
s §
&
‘ where
0 1 o0 o
[c] = 0 0 o0 1 , (67)
0 0 0 0O
' 0 0 0 0
0O 0 0 o0
4 0 0 0 o
I =16 o 1 of" (68
0 0 0 1

L. 00
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(E] = (69)

o O O O

Equations 62 and 66 together with the given foundation modulus functions
K(x) and S(x) can be solved by the implementation of computer programming
for obtaining the displacement field w(x).

This approach, based upon a simple model, has been checked numerically
for some polymer systems. Results have shown encouraging agreements while
the prefracture problem is extremely complicated. Applications of this
theory to propellant polymers are reported later.

2.5.3 Further Details - Considering that the thickness of the premordial

craze as 2e then the elongation foundation modulus varies as a function of

the development of the new phase. For craze and uncraze regions respectively:

K(x) = 2E (0 < x <c) (70)

h + e(x) (g—- 1)
C

where EC is the modulus of elasticity in the craze region.

K(x) = Zh“E ) (c < x < 2¢) (71)

If K is the constant elongation modulus, then

K(x) = g(x) K, (0 < x < c) (72)
K(x) = K, (c < x <2c) (73)
where g(x) = [1 + 9%§L(§% - l)]Ql. (74)

The shear foundation modulus varies as follows:

S(x) =0 (0 < x <€) (75)

»
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S(x) = ¢hG (c < x <2) (76)

where § is a proportional constant and G is the shear modulus of the

uncrazed medium,

2.6 Effect of Ammonium Perchlorate on Prefracture Behavior of Propellant

Polymer

2.6.1 Introduction - The objectives of this work are to develop a

mathematical model which predicts prefracture behavior of solid propellants

8 under load and to establish whether a definable relationship exists between
craze or microflaw development and subsequent crack propagation in solid
propellants. This effort will contribute to the reliability of missile pro-
pulsion systems by developing a theoretical understanding of the processes
leading to propellant cracking.

Currently a two-dimensional mathematical model has been developed for
analyzing individual crazes using infinitesimal elasticity theory. However,
in order to fit to systems with large deformations a ''one-dimensional"
mathematical model has been developed for describing two-dimensional plane
crazes. Based upon the use of "clamped" double cantilever beams the dis-
placement field between the beams has been calculated as a result of applied
stress as well as functions of the modulus of elasticity of the medium,
the thickness of each beam, the magnitude of shear and the variation of the
strength of the oriented polymer as the prescribed boundary conditions of a
craze.

It was found that under a constant tensile stress the displacements of a
craze increase in magnitude as the percentage of ammonium perchlorate in the
propellant polymer increases. The geometrical shapes of the craze were
observed to agree fairly well with the analytical predictions.

2.6.2 Analysis - One-dimensional double augmented beams are used to
simulate the two-dimensional plane craze as shown in Figure 13. A uniform
tensile stress % is applied. At the craze region a new phase of oriented

molecules with voids is developed. They act as prescribed boundary resistance

forces on the surface of craze. For properly describing the craze opening,
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the basic equation determining the deflection of a beam on an elastic

foundation is utilized:

EIV2v2y - GShVZW + K(x)w = 0, (77)
where E is the modulus of elasticity of the polymer,

I1is h3/12, the second moment of the beam cross-section per unit width,

w is the vertical displacement,

G is shear modulus,

8 is a fraction,

h is the height of each split beam,
and XK(x) is the modulus of elasticity of the craze material in the new phase.

By considering a continuous variation of the modulus function k(x), the

application of the calculus of variation reveals that for a beam of 2¢ in

length where ¢ represents the craze length the modulus function varies as

follows:
k() = k [£+ (1 - £ + e - 2/ + e - 0],
(0 <x<c)
k(x) = k (c < x< 2) (78)

o)

where f is a fraction identifying the density of the craze medium,
X is a constant,
and ko is the modulus function of the polymer without craze. It is easily
verified that
2E

ko = 5 (79)

With the following boundary conditions

w'(0) = w'"(0) = w"(2c) = w''"(2¢c) = 0, (80)

Equation 77 can be solved by finite-difference method.




2.6.3 Experimental Results - Assuming that h/csz 0.2, § = 0.1, and A = 3,

a number of displacement and stress distributions have been obtained for
propellant polymers containing different amounts of ammonium perchlorate
particles.

Specimens having three percentages of ammonium perchlorate have been
tested in a universal testing unit and true stresses and true strains have
been calculated.

Referring to Figure 14 for all the specimens tested, it was found that
the modulus of elasticity for the initial portion of the stress-strain curve
was essentially constant. The propellant polymer was composed of cured HTPB
binder containing small percentages of ultra-fine ammonium perchlorate (AP).

For specimens with 0% AP, E = 142 psi.

For specimens with 2% AP, E = 94.2 psi.

For specimens with 10% AP, E = 75 psi.

The sample specimens were die cut from thin cast sheets with nominal
thickness of about 3/32'",

The true stress was determined on the basis that the volume of the
sample specimen was assumed constant throughout the duration of testing.
Thus the load divided by the instantaneous cross-sectional area gives the
true stress value. As for the true strain values, the logarithm of the length
ratios has been calculated. The original gage length chosen was 2", Figure
15 shows the dimensions of a die cut propellant polymer specimen.

In order to see the effect of the percentage of ammonium perchlorate
particles (6u) on the displacements of a craze, Figure 16 shows their
influence under a constant stress of 20 psi.

Figures 17-19 respectively show the displacement field for 0, 2 and 10%
ammonium perchlorate under different stresses as indicated.

For the purpose of observing the influence of the density variation of
the craze medium Figures 20 - 22 respectively show the f quantities as
affected by 0, 2 and 10% ammonium perchlorate under a same stress of 30 psi.

2.6.4 Remarks - Referring to Figure 24 it is seen that there are
numerous small crazes developed on the surface of the propellant polymer

containing 2% ammonium perchlorate. The big craze had been helped to grow
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by slicing with a sharp blade initially. Afterwards the big craze did grow
itself under greater load. It is not known, however, why numerous crazes
developed on this specimen and some others while many others did not show
any tendency of crazing.

The general agreement between theoretical and experimental results is
interesting. It is even more interesting to note that the experimental data
only fit those curves in displacements for f = 0.1. Apparently this indicates
that the craze material at the central section has reduced to only one tenth
of that of the original polymer composites.

As for the stress distribution as affected by different fractional strengths
at the central section of the craze, Figure 23 shows the general trend pre-
dicted according to the present model.

An actual photomicrograph was taken of a craze as shown in Figure 24.

The craze was developed at Oy = 18.2 psi for a specimen containing 2%
ammoniuwm perchlorate. A comparison of theoretical and experimental results
is shown in Figure 25. The circles are measured points which agree very
well with the theoreticul curve With f + 0.1, Under a greater stress, i.e,
00 = 57.7 psi the displacement field follows the same curve for f = 0.1 as

shown in Figure 26.*

2.7 Fracture Initiation and Propagation in Craze Developed in Filled

Elastomers

2.7.1 Introduction and Method of Approach - The time-dependent mechanical

behavior of highly filled elastomers has received extensive study because of
their use as rocket propellants. The filler is typically an inorganic powder
with particle diameters within the range of 1 - 200 u. Filler concentrations

as high as 75 - 88% by weight are usually employed. The response of such a

* It should be noted here that the flaw depicted in Figure 24 was asymmetrical.
The left side of the flaw (i.e. the part not shown in Figure 24) is approxi-
mately % the length of the side used in the comparison shown in Figure 25. The
maximum opening is (of course) the same for both sides of the flaw in terms of

absolute dimensions (Comment added by Air Force Project Manager).
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material to an imposed stress quite often differs substantially from that of
the unfilled elastomer as a consequence of both the reinforcing ( or perhaps
weakening) action of the filler particle and the surface interactions between
the filler and the polymer. For example, the effects of ammonium perchlorate

on the stress-strain response and some typical physical properties are shown
in Figure 27 and Table 1. These results show that an increase in the percent-
age of ammonium perchlorate decreases the modulus of elasticity instead of
reinforcing it.

One of the most serious and still unresolved problems in high filled
so1id propellant is the fracture and prefracture behavior of such a polymeric
system under load. Why and when do the actual cracks initiate and propagate?

In this report a fracture initiation and propagation mechanism for such
polymer system is suggested:

In the neighborhood of particle surfaces, voids initiate due to the
breakage of bonds between the filler and the elastomer. They initiate pre-
ferentially near large particles or at sites having imperfect bonding.

The breaking of bonds between the filler and the matrix weakens or
softens the material such that a localized large strain is generated.

The localized large strains continue to extend until the ultimate strength
of the medium is reached.

Finally, the fibrils (rubbery binder) which connect the bulk polymer
matrix break down and true fracture initiates.

I. appears that the craze fibril bundles play an important role in
fracture initiation and propagation. As a result both the nonlinear
characteristics of the craze fibrils and their orientation seem to dominate
the time dependent mechanical behavior.

Based on these mechanisms, a one-dimensional augmented double beam model
(16) together with the reaction rate theory is employed to analyze the time
dependent displacement and stress distribution along a craze profile. Figure
28 shows the schematic disgram of the model. A series of springs which
connect between two beams are used to represent the craze fibril bundles.

Two time dependent quantites f(t) and A(t) are used to measure rupture and

16. S. S. Chern and C. C. Hsiao, '"Prefracture Behavior of Polymer Systems'",
Section 2.5 in this report (1980).
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the orientation of the molecular bonds, respectively. The variation of the
ratio of the foundation moduli - that is the modulus with craze present over
that without:

A(t)z . e-l(t)z -2

Alt)e(t) | -a(t)e(t) _,

qlz, £, (1) ,c(t)] = £(8) + (1 - £(¢) &
(]

(81)

where f(t) is the fraction of unbroken molecular bonds per unit length at the

central position of the craze. It is evident that 0 < f(t) <1,
A(t) is a quantity which measures the nonlinearity of the foundation

modulus as a result of the orientation of the molecules,

and c(t) is the time dependent craze length measured from the center of a
craze, Figure 29 shows several curves on the variation of the
foundation modulus q versus the dimensionless craze length c(t) = 1,
with f(t) = 0.5, and A(t) = 1, 5, 10, 20, 30, 50.

In general, an excellent approach in obtaining the time dependent
behavior has been the use of the statistical theory of the absolute reaction
rate (17,18,19) for a system of oriented polymeric molecular elements.

Broken elements represent the breakage of molecular bonds under the influence
of applied load. This modeling for studying the behavior of craze fibril
bundles seems quite adequate as they are oriented molecules. Now let g(t)

be the fraction of unbroken elements per unit volume at the central position

1/3

x = 0 of the craze (that is, f(t) = g (t)) then the rate of change of g is

given as follows:

Fex0-0-Kg (82)
where

K. = w, exp [-U/RT - yy(B)], (83)

K, = w, exp [u/RT + By (t)]. (84)

17. C. C. Hsiao, "Theory of Mechanical Breakdown and Molecular Orientation

of a Model Linear High Polymer Solid", J. Appl. Phys., Vol. 30, p. 1492 (1959).
18. C. C. Hsiao, S. R, Moghe and H. H. Kausch von Schmeling, "Time-Dependent
Mechanical Strength of Oriented Media'", J. Appl. Phys., Vol. 39, 3857 (1968).
19. C. C. Hsiao, "Fracture", Physics Today, Vol 19, 44 (1966).
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Kr and Kb are the rate of reformation of broken elements and that of the

unbroken elements, respectively. w. and w, are respectively the frequencies
of the jump condition of the elements with respect to the forming and
breaking processes,
U 1is the activation energy,
R 1is the universal gas constant,
T 1is the absolute temperature,
¥y and B are positive quantities,
Y(t) is the force per average molecular cross-section in its axial
direction,
For moderately large loads (eq. critical crazing load) the influence of

reformation can be neglected, that is:
K. = 0. (85)

For a uniaxial tension Oo, v(t) is equal to Oo. Hence Kb is the only
material constant left which will govern the function g(t) during rupturing
processes. The solution of Equation 82 together with the initial condition
that

g(0) (86)

B
oQ
-

is

]

g(t) = g, exp(-Kt). (87)

The value Kb can be determined from experimental creep data under constant
loads. It can be shown that 8 and the term wy exp(U/RT) are respectively the
slope and the intercept of curves plotted with a log of time-to-break versus
load.

During the prefracture process, it is reasonable to assume that the craze
tip growth mechanism is dominated by steady-state creep. According to a
general Arrhenius-type equation, the steady-state craze tip growth velocity

can be written as:
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v = Vg exp(-AG/RT) (88)

where the quantity v, can be thought of as the maximum attainable craze
velocity and AG as the free enthalpy of activation to overcome one ''obstacle'.

Hence, the time dependent craze length can usually be represented either by

c(t) = c~+ ¢C

o In(e + 1)

1 (89)

for the initial stage in creep, or
c(t) = co-Ftvoexp(-AG/RT) (90)

for the steady-state creep where R is the initial flaw size from which a
craze may develop and < is a constant.

Combining Equations 81, 87 and 89 and some suitably chosen function
A(t), the fraction of foundation modulus can be expressed as a time dependent
function.

Using this q(t) together with the governing equation and proper boundary
condition (Equations 87 and 89) both the time-dependent displacement and
stress along the craze profile can be solved.

2.7.2 Stability Criterion of Fracture Initiation and Propagation - A

catastrophic failure*in a growing craze will occur once critical conditions
are reached. Instead of using energy release rate or crack opening dis-
placement (COD) as a critical criterion for crack propagation studies, a
volume fraction criterion is proposed:

Let wcrack(x) be the displacement field of an elliptical crack in a two-

dimensional infinite plane sheet (20).

2
2(1-v®) o
9 /%) - x° 91)

(x) 5

wcrack

where v is the Poisson's ratio of bulk polymer and E is its modulus of elasticity.

* Catastrophic failure refers to a sudden breakdown of craze fibrils.

20, 1. N. Sneddon, Fourier Transform, McGraw-Hill, New York, 426 (1951).
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Define V and V
craze cr

ack 25 the volumes enclosed by either the craze and

crack profile, respectively, that is:

c(t)
Veraze(t) = 4 boé WorazelX-t) dx, (92)
clt) 21 (1-v%) b c2(t)
— v 93
Vcrack(t) = 4bg é ‘lcrack(x) dx = E? (o) . (93)
(o]
Let G(t) = Vcraze(t) /Vcra,k(t)‘ (94)

Assume that a critical value Gc exists such that when

G < Gc : craze is stable

G z_Gc ¢ craze fibrils break down catastrophically
The time tc such that G(tc) = Gc is called the fracture initiation time,

at which a crack commences and propagates within the craze.

2.7.3 Results - Based upon these ideas, a number of time dependent
behaviors have been calculated and plotted.

Under uniaxial tension o, = 7.5 psi for 10% ammonium perchlorate
(Eo = 75 psi) with initial flaw size cy = 0.2 mm and initial fraction of
unbroken bonds go = 0.9, each elapsed time is considered to be of 5, 10, 20,
30, 40 or 50 minutes, and the other data used are Kb = 0.1, A(t) = 3,
c(t) = 0.2+ 0.2 In(1 + t), several plots are given:

Figure 30 shows the time dependent craze displacements.

Figure 31 shows the corresponding time dependent stress distributions
along the craze boundary.

Figure 32 shows the corresponding time dependent volume fraction G(t).

Furthermore Figure 33 shows the dependence of the volume fraction G(t)
on Kb and c(t).

Similarly with all the quantities the same as given before except that
c(t) is chosen to be 0.2 + 0.02 t, several more illustrations are obtained:

Figures 34 - 36 show plots similar to those of Figures 30 - 32,

In addition Figure 37 shows the dependence of the volume fraction G(t) op

Kb and c(t).
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2.7.4 Remarks - Unlike fracture mechanics, where energy release rate is

widely used as a fracture criterion, the load-bearing capability of craze
fibril bundles makes it difficult to express energy release rate as function
of craze tip growth only. In fact, the energy release rate is not only a
function of time but also functions of craze length, fibrous strength and
breaking rate of fibrils. 1In this report, the reaction rate theory is
employed to calculate the breaking rate of fibrils and the time dependent
nonlinear behavior of the foundation modulus. Then an augmented double beam
model is used to find the displacement of craze profile and load-bearing
capacity of craze fibrils. Finally, a volume fraction is proposed as an
instability criterion of the whole craze-crack transition. The results show
that the instability behavior of craze is dominated by the breaking rate of

craze fibrils instead of the growing velocity of the craze tip.
4. FINAL REMARKS

The complex problem of prefracture of propellant polymer has been
successfully tackled. Several possible theoretical developments have been
made. Some experimental evidences in support of the mathematical modelings
have been found. A new laser speckle interferometric technique for
measuring in-plane displacement fields has been successfully developed. This
together with the augmented double beam model for craze stress analyses has
paved the way to study crazing in solid propellant polymer systems. The
basic theory has also been extended to cover a possible investigation on the
fracture initiation of propellant polymers. These theories and methods can
be tested once proper data associated with propellant polymers become

available.
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